6. isothermal reactor design: (molar flow rates	Ð
In many instances it is easier to work with molar flow rates / no	
of moles than conversion.	
figure > membrane marken	
are any multiple reactions in cas above	
flowrates => membrane reactor are => multiple reactions in gas phase necessary	
Molar flow rate balance algorithm:	
- We must write a mole balance for each and every species as oppose	d
to just one species (in the convers	ian
algorithm)	
steps :	
1. Write mole balance on all the specie	6
2. write rate law	
3. relate mole balances to one anothe	r
through relative rates	
4. relate conc. in rate laws to flow re	hes
(molar) - molar flow rates throug	
stoichiometry and pressure drop	
5. combine and solve using oDE solve	r
J. Contoine and solve using oue solve	
Notos on	
Notes on Elements of chemical reaction	
Elements of chemical reaction engineering, H. Scott Fogler	
- Ranjeet Utikar	

Mole balances on CSTR, PER, PBRs and
batch reactors
Uquid phase:

$$V = V_0$$
 Constant volume
 $T = V_0$ no change in volumetric
Reaurate
 $aA + bB \rightarrow cC + dD$
Mole balances
Species A species B
Batch $dC_A = r_A$ $dC_B = b r_A$
 $dc = r_A$ $-(bra) r_A$
PFR $V_0 dC_A = r_A$ $V_0 dC_B = b r_A$
 dV $dV = a$
 $V = T_0 CC_A - C_A$ $V_0 dC_B = b r_A$
 $dV = a$
 $dV = a$ $dV = a$
 $V = r_B = r_C = r_B$
 $T_A = r_B = r_C = r_B$

Gas phase -> The molar flow rates for each species F; are obtained by mole balance on each species. aA + bB -- cC + dD Mole balances: PFR PBR CSTR $\frac{A}{-r_{A}} = \frac{F_{A_{0}} - F_{A}}{-r_{A}}$ $\frac{dF_A}{dV} = r_A$ dFA = rA dFa-r'a dFa = ra c) V= Fco-Fc dFc = rc dw dFc = rc -rc DDV = FDO-FD dFo =ro dFD = 1D - 5 Rates : ... For PBR rate law: - C'A = KA CA CA

3

$$\frac{f_{0}}{r_{a}} = \frac{f_{0}}{c} = \frac{f_{0}}{c} = \frac{f_{0}}{d}$$

$$\frac{f_{0}}{r_{a}} = \frac{f_{0}}{c} \frac{f_{0}}{a}$$

$$\frac{f_{0}}{r_{c}} = -\frac{f_{0}}{c} \frac{f_{0}}{a}$$

$$\frac{f_{0}}{r_{0}} = -\frac{f_{0}}{c} \frac{f_{0}}{r_{0}}$$

$$\frac{f_{0}}{r_{0}} = -\frac{f_{0}}{r_{0}} \frac{f_{0}}{r_{0}}$$

$$\frac{f_{0}}{r_{0}} = \frac{f_{0}}{r_{0}} \frac{f_{0}}{r_{0}}$$

$$\frac{f_{0}}{r_{0}} = \frac{f_{0}}{r_{0}} \frac{f_{0}}{r_{0}} \frac{f_{0}}{r_{0}} \frac{f_{0}}{r_{0}}$$

$$\frac{f_{0}}{r_{0}} = \frac{f_{0}}{r_{0}} \frac{f_{0}$$